
Transactional Workflows

10/03/2022CS 565 - LECTURE 5

CS565 - Business Process Management Systems

TRANSACTIONAL WORKFLOWS

 Transactions are units of work that must be executed atomically and (seemingly) in

isolation from other transactions

 Their effects should be durable: no completed work should be lost

 To support transactional workflows, a WFMS must provide for the definition of
semantic properties of the tasks involved

 For instance, to ensure that a failed workflow will end in a correct state, the following
properties must be exploited:

 executing tasks that have ACID properties can be aborted and their effects will be
undone by the underlying DBMSs

 if failure was caused by a single component task, a semantically equivalent task may
be executed in order to resume normal execution (contingency)

10/03/2022CS 565 - LECTURE 5

ACID PROPERTIES

 The basics: ACID properties

 Atomicity: a transaction is an indivisible (atomic) unit of work;
“all or nothing” property

 Consistency: transaction programs must be semantically correct;
resulting state is consistent even if during its execution a
transaction may cause temporary inconsistencies

 Isolation: every transaction appears to execute in isolation; for
any transaction T, it appears that no other transaction executes
partially before or partially after T

 Durability: effects of committed transactions are permanent and
guaranteed to survive subsequent failures

10/03/2022CS 565 - LECTURE 5

TRANSACTIONAL WORKFLOWS

 Combination of ACID and compensating properties enable workflows to be

undone (backward recovery)

 Consistency permits forward recovery

 In general, specification of transactional requirements of workflows involves

definition of tasks and associated execution requirements

 Main aspects of workflow specification:

 Task specification: externally observable execution states and transitions between

these states

 Task coordination requirements: inter-task execution dependencies, data flow

dependencies, termination conditions

 Correctness requirements: execution atomicity, concurrency control and recovery

requirements

10/03/2022CS 565 - LECTURE 5

TASK SPECIFICATION

 Specified task structure must include:

 a set of visible execution states of the task

 a set of legal transitions between states

 transition enabling conditions

 Abstract model of tasks: state machine (automaton) whose

behavior is defined in a state transition diagram

 Each task may have a different internal structure and thus a

different state transition diagram, depending on the characteristics

of the system on which the task will be executed

10/03/2022CS 565 - LECTURE 5

TASK SPECIFICATION

 Frequently used types of tasks: transition diagrams

10/03/2022CS 565 - LECTURE 5

done aborted

executing

initial

aborted
committed

executing

initial

crash
submitted

committed
aborted

initial

executing

prepared-

to-commit

TASK SPECIFICATION

 Other characteristics of a system that executes a task may influence the
properties of the task without affecting its structure

 e.g., a system may guarantee serialization order allowing more flexible task
scheduling; other systems may guarantee idempotency, i.e., the ability to
execute a task one or more times without changing the result, thus allowing
safe repetition tasks

 State transitions may be affected by scheduling events

 Partial output of tasks may be made available to other concurrently executing
tasks

 Also, tasks may request input from other tasks

 Workflow tasks communicate through persistent variables that are local to the
workflow

10/03/2022CS 565 - LECTURE 5

TASK SPECIFICATION

 Persistent variables may hold parameters for the task program;

different initial parameters may result in different task executions

 Data flow between tasks is determined by assigning values to input

and output variables

 A task may use parameters stored in its input variables, it may

retrieve and update data in the local system, store results in output

variables and may be queried about its execution state

 At any time, the execution state is defined as a collection of states of

the constituent tasks and the values of all variables

10/03/2022CS 565 - LECTURE 5

TASK COORDINATION REQUIREMENTS

 Once tasks of a workflow are specified, control flow can be defined

by specifying task coordination requirements

 They are usually expressed as scheduling preconditions for each

transition that is under the control of the workflow scheduler

 Coordination requirements can be statically defined or determined

dynamically during execution

 Static specification: preconditions may involve the following

 Execution states of other tasks (e.g., “task t1 cannot start until

task t2 has ended”, “task t1 must abort if task t2 has

committed”)

10/03/2022CS 565 - LECTURE 5

TASK COORDINATION REQUIREMENTS

 Output variables of other tasks (e.g., “task t1 can start if task t2

returns a value greater than 10”)

 External variables (e.g., “task t1 cannot start before 9am”)

 Dynamic specification:

 Task dependencies are created during execution by evaluating a

set of rules

 Events and conditions affecting the evaluation of rules may

change along with changes in the execution environment and

with earlier task executions

10/03/2022CS 565 - LECTURE 5

FAILURE / EXECUTION ATOMICITY REQUIREMENTS

 Designer must specify failure and execution atomicity

requirements of a workflow and the WFMS must guarantee

that every execution of the workflow will terminate in a

state that satisfies these requirements

 these are called acceptable termination states

 committed acceptable termination states: objectives have been

achieved

 aborted acceptable termination states: workflow failed to

achieve its objectives; partial effects must be undone

10/03/2022CS 565 - LECTURE 5

TRANSACTIONAL ASPECTS OF WORKFLOWS

 Workflow enactment system guarantees

 The enactment service should provide guarantees for all workflows
executed under its control:

 Correctness of execution of workflow instances: a correct final state
is reached

 Different notions of correctness may be assumed:

 All tasks are executed exactly as scheduled

 Sets of acceptable termination states, consistency predicates, goal-
satisfaction predicates

 Determining specification correctness would guarantee that no workflow
enactment takes place unless it can be shown to be correct

10/03/2022CS 565 - LECTURE 5

TRANSACTIONAL PROPERTIES

 Refer to certain types of workflows (e.g. e-commerce workflows)

 Most products do not provide for such properties

 Transactional properties include:

1. Failure atomicity: workflows execute entirely or not at all

E.g., “buy a book” workflow: consists of tasks “book payment” and

“book delivery”;

Both must be executed or none of them, i.e., we cannot tolerate

partial results in an unsuccessful execution

• Methods from DBs and Distributed Systems can be used to

guarantee failure atomicity.

10/03/2022CS 565 - LECTURE 5

TRANSACTIONAL PROPERTIES

 Providing for failure atomicity:

 forward recoverability: after a failure occurs, the workflow state is
recovered (from log files) and the execution continues

 backward recoverability: effects of interrupted tasks are rolled back

 compensation: undo the effects of unfinished tasks by invoking
other tasks with opposite effects

 Most systems provide mostly forward recoverability.

 The type of action that can be undertaken may also depend on
administrative or legal issues:

 E.g., cannot simply undo a bank deposit. Must perform
compensating action and compose an audit trail.

10/03/2022CS 565 - LECTURE 5

TRANSACTIONAL PROPERTIES

2. Data consistency :

 Requirements are similar to the case of DB

transactions: workflow tasks must appear to execute

in isolation

 If concurrently running activities need to exchange

data, the data consistency maintenance problem

becomes quite hard

10/03/2022CS 565 - LECTURE 5

TRANSACTIONAL PROPERTIES

 Deadlines: often deadlines are attached to tasks in the form of absolute or

relative time constraints

 E.g., “task should be completed by 3pm” vs “task should be completed

within an hour”

 Typically, WFMS may guarantee two kinds of deadlines:

 Hard deadlines: tasks are executed in time or they are aborted

 Soft deadlines: system tries to minimize the number of deadline

violations

 In general, guarantees may be too strict and affect performance, or too loose and

affect adequacy.

 Tools: transaction monitors, persistent communication methods, database

concurrency control mechanisms used in a rather rudimentary and

uncoordinated way

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS

 Transaction: in the context of a DBMS, a transaction is a collection of DB
operations for which the DBMS guarantees the properties of atomicity,
consistency, isolation and durability (a.k.a. ACID properties)

 In workflows, these properties may be too restrictive:

 workflows may involve tasks that are long-lived, span boundaries of
multiple information systems and database systems that have been
developed independently of one another

 an obstacle in applying ACID properties in workflows is the need to
preserve the autonomy of the participating systems: a great deal of
modifications would be needed in order to achieve distributed
executions while maintaining the transaction semantics

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS

 Other drawbacks of traditional transaction models:

 synchronizing control or data flow between independent transactions while
ensuring durability is hard (concurrently executing transactions are treated as
unrelated units of work)

 most applications require cooperation and sharing data; traditional transaction
models do not support any form of cooperation

 Extended transaction models have been proposed:

 they come with a predefined set of properties that may or may not apply to

the semantics of a particular activity

 processing entities involved may not provide support for facilities implied by a

given extended transaction model

 Hence, there is a need for developing transactional workflow

models in order to provide transactional support to workflows
10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS

 Correctness of concurrent transaction execution is based on
serializability:

 An execution of a set of transactions is serializable if there exists
a possible serial execution of the same set such that, in both
executions, each transaction reads the same values, and the final
states are the same.

 Ensuring serializability is computationally infeasible

 Operations conflict iff they are issued by different transactions and
at least one of them is a write operation

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS

 In “traditional applications”, transactions are short; atomicity and isolation are of

primary importance

 New applications involve complex transactions that take longer to process; these

are referred to as long lived transactions.

 Imposing ACID properties on long lived transactions:

 failures are more probable and roll-back is more costly

 performance may be degraded if a long-lived transaction locks all items it needs

to access for its entire duration

 probability of deadlock increases (due to long duration, large number of items)

 Must relax at least two of the ACID properties: atomicity and isolation

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS

 Two basic approaches to support transactional workflows:

 Transactional & workflow aspects treated separately

• Separate transaction & workflow models exists and are combined to form transactional

workflow models

 Both aspects are integrated

• One single transactional workflow model is specified

 First approach:

 Different relations between two models:

• WF/TR: workflows are more abstract than transactions, transactional models provide

semantics to workflow models

• TR/WF: opposite than the above

• TR+WF: at same level of abstraction, submodels of an implicit, loosely coupled process model

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS

 Second Approach:

 Different variants wrt the model nature:

• Hybrid Transactional Workflow Model (TRWF): single hybrid model

• Transactions in workflows (WF): single workflow model where transactional aspects are mapped

to workflow primitives

• Workflow in transaction (TR): opposite than previous one

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS

 Conceptual specification of transactional workflows:

 2 situations can occur:

• WFDL (Workflow Definition Language) used to specify workflows and

TRDL (Transaction Definition Language) transactions

• One language is a refinement of the other

• L2 is a refinement of L1 when there is a mathematical relation between

languages state space and between primitives such that transitions defined via

primitives sustain the correspondence between states

• Integrated language TRWFDL (Transactional Workflows Definition

Language) to specify transactional workflows

• Single state space as a cross product of the two state spaces

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS – LANGUAGE

REFINEMENT

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS – WF/TR

 WF/TR:

 Control flow aspect leads specification

 Low-level WF semantics rely on transactional semantics of individual tasks or

groups of tasks

 Primitives of WFDL are mapped to those of TRDL

 Common in commercial workflow management systems

 TRDL spec, when executed, leads to intermediate steps wrt the WFDL spec

 Some language allow multiple tasks to be grouped into the same transaction

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS – WF/TR

10/03/2022CS 565 - LECTURE 5

WFDL TRDL

TASK task1

BUSINESS TRANSACTION

USES FORM form1

END TASK

BEGIN TRANSACTION

READ form1.field1

READ form1.field2

USE form1

WRITE form1.field1

WRITE form1.field2

IF status_ok

THEN COMMIT TRANSACTION

ELSE ABORT TRANSACTION

END TRANSACTION

WORKFLOW TRANSACTION MODELS – TR/WF

TR/WF:

 Transactional behaviour is leading aspect

 High-level transactional semantics are specified with a workflow

as elaboration

• Can enable the specification of a non-linear process

 Used in workflow management of e-commerce applications

 Execution of WFDL will lead to intermediate steps wrt the

execution of TRDL

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS – TR/WF

10/03/2022CS 565 - LECTURE 5

TRDL WFDL

TRANSACTION tr1

EXECUTE ATOMIC

IMPLEMENTATION wf1

END TRANSACTION

WORKFLOW wf1

TASK task1 task2 task3 task4

SEQUENCE task1 task2

SEQUENCE task1 task3

SEQUENCE task2 task4

SEQUENCE task3 task4

END WORKFLOW

WORKFLOW TRANSACTION MODELS – TR+WF

 TR+WF:

 Balance between control flow & transactional behaviour

 High-level transactional semantics specified at the same level as the workflow process

 Leads to a separation of concerns as the transactional specification can change independently of the

workflow one

10/03/2022CS 565 - LECTURE 5

WFDL TRDL

WORKFLOW wf1

REFERS TRANSACTION tr1

TASK task1 task2 task3

SEQUENCE task1 task2

SEQUENCE task2 task3

END WORKFLOW

BEGIN TRANSACTION tr1

REFERS WORKFLOW wf1

COMP ctask1 task1

COMP ctask2 task2

SAFEPOINT task1

END TRANSACTION

WORKFLOW TRANSACTION MODELS - TRWF

 TRWF:

 Hybrid workflow & transaction models

 Contains both workflow & transactional primitives

 Can be merged by combining two languages of a TR+WF pair

10/03/2022CS 565 - LECTURE 5

TRWFDL

WORKFLOW wf1

TASK task1 COMP ctask1

TASK task2 COMP ctask2

TASK Task3 COMP none

SEQUENCE task1 task2

SEQUENCE task2 task3

SAFEPOINT task1

END WORKFLOW

WORKFLOW TRANSACTION MODELS – WF

WF:

 Transactional semantics are expressed in workflows

• Specific patterns are used to express transactional behaviour

• Example: compensation patterns in workflows to achieve relaxed atomicity

• Compensating control flow linked to normal control flow along with a condition

checking whether rollback must be performed

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS – WF

10/03/2022CS 565 - LECTURE 5

WFDL

WORKFLOW wf1

TASK task1 task2 task3 # regular tasks

TASK ctask1 ctask2 # compensating tasks

SPLIT or1 or2

SEQUENCE task1 or1 # start regular control flow

SEQUENCE or1 task2

SEQUENCE task2 or2

SEQUENCE or2 task3

SEQUENCE or1 ctask1 # start compensation control flow

SEQUENCE or2 ctask2

SEQUENCE ctask2 ctask1

END WORKFLOW

WORKFLOW TRANSACTION MODELS – TR

 TR:

 Workflow semantics expressed in transactional specification

• Transactions have structured processes mapping to their actions

10/03/2022CS 565 - LECTURE 5

TRDL

TRANSACTION tr1

SUBTRANSACTION s1

action1

action2

END SUBTRANSACTION

SUBTRANSACTION s2

action3

action4

END SUBTRANSACTION

PARALLEL s1 s2

END TRANSACTION

WORKFLOW TRANSACTION MODELS – COMPARISON

Class Goal Means Pros Cons

WF/TR WF with robust

character

Data mgt in

WFs

Separation of concerns,

flexibility, system support

integration

TR/WF TR with complex

control flow

Process mgt

in TRs

Separation of concerns,

flexibility

integration

TR+WF Integrated WF &

TR

Coupled

process &

data mgt

Separation of concerns,

flexibility

Integration,

consistency

TRWF Integrated WF &

TR

Hybrid

process &

data mgt

Integration consistency Complex

formalism,

inflexibility

WF WF with robust

character

Advanced

process mgt

Simple formalism,

consistency, system support

Limited

expressiveness

TR TR with complex

control flow

Advanced TR

mgt

Simple formalism,

consistency

Limited

expressiveness

10/03/2022CS 565 - LECTURE 5

WORKFLOW TRANSACTION MODELS – LANGUAGE

CLASSIFICATION

10/03/2022CS 565 - LECTURE 5

TRANSACTION EXERCISES

10/03/2022CS 565 - LECTURE 5

TRANSACTIONS EXAMPLES

Example 1: Undo Recovery - Case 1

 System crash after checkpoint
<START T1>

 Start scanning from the end.
<T1, A, 5>

<START T2>

<T2, B, 10>

<START CKPT(T1,T2)>

<T2, C, 15>

<START T3>

<T1, D, 20>

<COMMIT T1>

<T3, E, 25>

<COMMIT T2>

<END CKPT>

<T3, F, 30>

 T3 is an incomplete transaction and must
be undone. We set F = 30.

 We find an <END CKPT>. Therefore, we

will stop scanning at the START CKPT.

 T2 committed. Do not touch!

 T3 incomplete. We set E = 25.

 No other transactions that started, but did

not commit, until the START CKPT. End of

scanning.

10/03/2022CS 565 - LECTURE 5

Example 1: Undo Recovery - Case 2

 System crash during checkpoint
<START T1>

 Start scanning from the end.
<T1, A, 5>

<START T2>

<T2, B, 10>

<START CKPT(T1,T2)>

<T2, C, 15>

<START T3>

<T1, D, 20>

<COMMIT T1>

<T3, E, 25>

<COMMIT T2>

<END CKPT>

<T3, F, 30>

 T3 incomplete. We set E = 25.

 T1 committed. Do not touch!

 T2 incomplete. We set C = 15.

 We find <START CKPT(T1,T2)>. The only

possible incomplete are T1, T2. Still, T1

committed. Therefore, we continue until

we meet <START T2>.

 T2 incomplete. We set B = 10.

 We meet <START T2>. End of scanning.

10/03/2022CS 565 - LECTURE 5

Example 1: Undo Recovery - Case 2

 System crash during checkpoint
<START T1>

 It is the same case as before.
<T1, A, 5>

<START T2>

<T2, B, 10>

<START CKPT(T1,T2)>

<T2, C, 15>

<START T3>

<T1, D, 20>

<COMMIT T1>

<T3, E, 25>

<COMMIT T2>

<END CKPT>

<T3, F, 30>

 We find <START CKPT(T1,T2)>. The only

possible incomplete are T1, T2.

Therefore, we continue until we meet all

<START Ti>, where i = 1,2.

10/03/2022CS 565 - LECTURE 5

Example 2: Redo Recovery - Case 1

 System crash after checkpoint
<START T1>

 We make a quick scan from the end.
<T1, A, 5>

<START T2>
<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

 We find <END CKPT> so we only need to
care with those mentioned in the

beginning record of the checkpoint and

the ones started after that. That is T2, T3,

and not T1.

 We start from the earliest transaction

mentioned in the beginning record of the
checkpoint and continue downwards.

 T2 committed, it must be redone. B = 10.

 T2 committed, it must be redone. C = 15.

 T3 committed, it must be redone. D = 20.

10/03/2022CS 565 - LECTURE 5

Example 2: Redo Recovery - Case 1

 System crash after checkpoint
<START T1>

 Now T3 is not a committed transaction
<T1, A, 5>

<START T2>
<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

and, as a result, we must not redo it.
 At the end of the recovery process, we

add an <ABORT T3> record to the log.

10/03/2022CS 565 - LECTURE 5

Example 2: Redo Recovery - Case 2

 System crash during checkpoint
<START T1>

 We must search back to the previous
<T1, A, 5>

<START T2>
<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

checkpoint and find its list of active
transactions.

 In this case there is no previous

checkpoint. We start from the beginning

of the log.

 Only T1 is committed and must be

redone. A = 5.

 At the end of the recovery process, we

add <ABORT T2>, <ABORT T3> to the log.

10/03/2022CS 565 - LECTURE 5

<START T1>

<T1, C, 35>

<T1, D, 450>

<START T2>

<T2, C, 18>

<T2, B, 12>

<T1, D, 500>

<COMMIT T1>

<START CKPT (T2)>

<END CKPT>

<T2, D, 18>

<START T3>

<T3, C, 45>

<T3, E, 2>

<T2, A, 10>

<COMMIT T3>

<COMMIT T2>

Example 3

 The following values are stored in the disk:

A=10, B=12, C=45, D=65, E=2.

 Given the log shown

 could this be an undo log?

 No, because, for an undo log, all

transactions mentioned at the start of the
checkpoint must commit before its ending.

 could this log result in the previously

mentioned values for A, B, C, D and E?

10/03/2022CS 565 - LECTURE 5

<START T1>

<T1, C, 35>

<T1, D, 450>

<START T2>

<T2, C, 18>

<T2, B, 12>

<T1, D, 500>

<COMMIT T1>

<START CKPT (T2)>

<END CKPT>

<T2, D, 18>

<START T3>

<T3, C, 45>

<T3, E, 2>

<T2, A, 10>

<COMMIT T3>

<COMMIT T2>

Example 4

 The following values are stored in the disk:
A=10, B=12, C=45, D=65, E=2.

 Given the log shown

 could this be a redo log?

 Yes.

 could this log result in the previously
mentioned values for A, B, C, D and E?

 No. The problem is the value of D. Since
T1 committed before the checkpoint and
is not mentioned as active, we are sure
that D = 500 for the moment. T2 also
accesses D. Maybe the changes were
written or maybe not. In either case, D=65

10/03/2022CS 565 - LECTURE 5

2-Phase Locking Protocol

 2-Phase Locking: All lock requests precede all unlock requests.

10/03/2022CS 565 - LECTURE 5

Exercise 1: 2PL

 For each of the following schedules, tell what the locking
scheduler would do, i.e., what requests would get delayed and

when would they be allowed to resume? Assume each lock is

taken immediately before the corresponding read or write and that

all locks are released immediately after the last element access.

a) R1(A); R2(A); W1(B); W2(B); R1(B); W2(C); W1(D);

b) R1(A); R2(A); R3(B); W1(A); R2(C); R2(B); W2(B); W1(C);

c) R1(A); W2(C); W1(B); R3(C); R2(B); W3(A);

d) W3(A); R1(A); W1(B); R2(B); W2(C); R3(C); R2(A);

e) R1(A); R2(A); R1(B); R2(B); R3(B); W1(A); W2(B);

10/03/2022CS 565 - LECTURE 5

Exercise 1: 2PL

 a) R1(A); R2(A); W1(B); W2(B); R1(B); W2(C); W1(D);

T1 T2

L1(A); R1(A);

L2(A); Denied

L1(B); W1(B);

R1(B);

L1(D); W1(D);

U1(A); U1(B); U1(D);

L2(A); R2(A);

L2(B); W2(B);

L2(C); W2(C);

U2(A); U2(B); U2(C);

10/03/2022CS 565 - LECTURE 5

Exercise 1: 2PL

 b) R1(A); R2(A); R3(B); W1(A); R2(C); R2(B); W2(B); W1(C);

T1 T2 T3

L1(A); R1(A);

L2(A); Denied

L3(B); R3(B); U3(B);

W1(A);

L1(C); W1(C);

U1(A); U1(C);

L2(A); R2(A);

L2(C); R2(C);

L2(B); R2(B); W2(B);

U2(A); U2(C); U2(B);

10/03/2022CS 565 - LECTURE 5

Exercise 1: 2PL

 c) R1(A); W2(C); W1(B); R3(C); R2(B); W3(A);

T1 T2 T3

L1(A); R1(A);

L2(C); W2(C);

L1(B); W1(B);

U1(A); U1(B);

L3(C); Denied

L2(B); R2(B);

U2(C); U2(B);

L3(C); R3(C);

L3(A); W3(A);

U3(C); U3(A);

10/03/2022CS 565 - LECTURE 5

Exercise 1: 2PL

 d) W3(A); R1(A); W1(B); R2(B); W2(C); R3(C); R2(A);

T1 T2 T3

L3(A); W3(A);

L1(A); Denied

L2(B); R2(B);

L2(C); W2(C);

L3(C); Denied

L2(A); Denied

DEADLOCK

10/03/2022CS 565 - LECTURE 5

Exercise 1: 2PL

 e) R1(A); R2(A); R1(B); R2(B); R3(B); W1(A); W2(B);

T1 T2 T3

L1(A); R1(A);

L2(A); Denied

L1(B); R1(B);

L3(B); Denied

W1(A);

U1(A); U1(B);

L2(A); R2(A);

L2(B); R2(B);

L3(B); Denied

W2(B);

U2(A); U2(B);

L3(B); R3(B); U3(B);

10/03/2022CS 565 - LECTURE 5

Compatibility Matrix for Lock Modes

 Compatibility matrix for shared, exclusive, update and increment

locks.

Locks requested

S X U I

Locks held in

mode

S Y N Y N

X N N N N

U N N N N

I N N N Y

Y - Yes

N - No

10/03/2022CS 565 - LECTURE 5

Exercise 3: Other Lock Modes

 Insert shared, exclusive and update locks, together with unlock
actions. Place a shared lock in front of every read action that is
not going to be upgraded, place an update lock in front of every
read action that will be upgraded and place an exclusive lock in
front of every write action. Place unlocks at the ends of
transactions.

a) R1(A); R2(B); R3(C); W1(B); W2(C); W3(D);

b) R1(A); R2(B); R3(C); W1(B); W2(C); W3(A);

c) R1(A); R2(B); R3(C); R1(B); R2(C); R3(A); W1(A); W2(B);
W3(C);

d) R1(A); R2(B); R3(B); R1(C); R2(C); R3(C); W1(A); W2(C);

e) R1(A); R2(B); INC1(B); INC2(C); R3(B); INC3(C); W2(D);

10/03/2022CS 565 - LECTURE 5

Exercise 3: Other Lock Modes

 a) R1(A); R2(B); R3(C); W1(B); W2(C); W3(D);

T1 T2 T3

SL1(A); R1(A);

SL2(B); R2(B);

SL3(C); R3(C);

XL1(B); Denied

XL2(C); Denied

XL3(D); W3(D);

U3(C); U3(D);

XL2(C); W2(C);

U2(B); U2(C);

XL1(B); W1(B);

U1(A); U1(B);

XL1(B); Denied

10/03/2022CS 565 - LECTURE 5

Exercise 3: Other Lock Modes

 b) R1(A); R2(B); R3(C); W1(B); W2(C); W3(A);

T1 T2 T3

SL1(A); R1(A);

SL2(B); R2(B);

SL3(C); R3(C);

XL1(B); Denied

XL2(C); Denied

XL3(A); Denied

DEADLOCK

10/03/2022CS 565 - LECTURE 5

Exercise 3: Other Lock Modes

 c) R1(A); R2(B); R3(C); R1(B); R2(C); R3(A); W1(A); W2(B); W3(C);

T1 T2 T3

UL1(A); R1(A);

UL2(B); R2(B);

UL3(C); R3(C);

SL1(B); Denied

SL2(C); Denied

SL3(A); Denied

DEADLOCK

10/03/2022CS 565 - LECTURE 5

Exercise 3: Other Lock Modes

 d) R1(A); R2(B); R3(B); R1(C); R2(C); R3(C); W1(A); W2(C);

T1 T2 T3

UL1(A); R1(A);

SL2(B); R2(B);

SL3(B); R3(B);

SL1(C); R1(C);

UL2(C); R2(C);

SL3(C); Denied

XL1(A); W1(A);

U1(A); U1(C);

XL2(C); W2(C);

U2(B); U2(C);

SL3(C); U3(B); U3(C);

SL3(C); Denied

10/03/2022CS 565 - LECTURE 5

Exercise 3: Other Lock Modes

 e) R1(A); R2(B); INC1(B); INC2(C); R3(B); INC3(C); W2(D);

T1 T2 T3

SL1(A); R1(A);

SL2(B); R2(B);

IL1(B); Denied

IL2(C); INC2(C);

SL3(B); R3(B);

IL3(C); INC3(C);

U3(B); U3(C);

XL2(D); W2(D);

U2(B); U2(C); U2(D);

IL1(B); INC1(B);

U1(A); U1(B);

10/03/2022CS 565 - LECTURE 5

RECOMMENDED READING

 Marek Rusinkiewicz and Amit Sheth. 1995. Specification and execution of transactional

workflows. In Modern database systems, Won Kim (Ed.). ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA 592-620.

 Grefen, P.W.P.J. (2002) Transactional Workflows or Workflow Transactions? In: 13th International

Conference on Database and Expert Systems Applications (DEXA), 2-6 Sept 2002, Aix en

Provence, France (pp. 60-69).

10/03/2022CS 565 - LECTURE 5

